Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8391, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600238

RESUMO

Friedreich's ataxia is a degenerative and progressive multisystem disorder caused by mutations in the highly conserved frataxin (FXN) gene that results in FXN protein deficiency and mitochondrial dysfunction. While gene therapy approaches are promising, consistent induction of therapeutic FXN protein expression that is sub-toxic has proven challenging, and numerous therapeutic approaches are being tested in animal models. FXN (hFXN in humans, mFXN in mice) is proteolytically modified in mitochondria to produce mature FXN. However, unlike endogenous hFXN, endogenous mFXN is further processed into N-terminally truncated, extra-mitochondrial mFXN forms of unknown function. This study assessed mature exogenous hFXN expression levels in the heart and liver of C57Bl/6 mice 7-10 months after intravenous administration of a recombinant adeno-associated virus encoding hFXN (AAVrh.10hFXN) and examined the potential for hFXN truncation in mice. AAVrh.10hFXN induced dose-dependent expression of hFXN in the heart and liver. Interestingly, hFXN was processed into truncated forms, but found at lower levels than mature hFXN. However, the truncations were at different positions than mFXN. AAVrh.10hFXN induced mature hFXN expression in mouse heart and liver at levels that approximated endogenous mFXN levels. These results suggest that AAVrh.10hFXN can likely induce expression of therapeutic levels of mature hFXN in mice.


Assuntos
Frataxina , Ataxia de Friedreich , Humanos , Animais , Camundongos , Coração , Processamento de Proteína Pós-Traducional , Fígado/metabolismo , Terapia Genética , Proteínas de Ligação ao Ferro/metabolismo , Ataxia de Friedreich/terapia , Ataxia de Friedreich/tratamento farmacológico
2.
Hum Gene Ther ; 34(21-22): 1095-1106, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37624734

RESUMO

Based on studies in experimental animals demonstrating that administration of adeno-associated virus (AAV) vectors to the cerebrospinal fluid (CSF) is an effective route to transfer genes to the nervous system, there are increasing number of clinical trials using the CSF route to treat nervous system disorders. With the knowledge that the CSF turns over four to five times daily, and evidence in experimental animals that at least some of CSF administered AAV vectors are distributed to systemic organs, we asked: with AAV administration to the CSF, what fraction of the total dose remains in the nervous system and what fraction goes off target and is delivered systemically? To quantify the biodistribution of AAV capsids immediately after administration, we covalently labeled AAV capsids with iodine 124 (I-124), a cyclotron generated positron emitter, enabling quantitative positron emission tomography scanning of capsid distribution for up to 96 h after AAV vector administration. We assessed the biodistribution to nonhuman primates of I-124-labeled capsids from different AAV clades, including 9 (clade F), rh.10 (E), PHP.eB (F), hu68 (F), and rh91(A). The analysis demonstrated that 60-90% of AAV vectors administered to the CSF through either the intracisternal or intrathecal (lumbar) routes distributed systemically to major organs. These observations have potentially significant clinical implications regarding accuracy of AAV vector dosing to the nervous system, evoking systemic immunity at levels similar to that with systemic administration, and potential toxicity of genes designed to treat nervous system disorders being expressed in non-nervous system organs. Based on these data, individuals in clinical trials using AAV vectors administered to the CSF should be monitored for systemic as well as nervous system adverse events and CNS dosing considerations should account for a significant AAV systemic distribution.


Assuntos
Dependovirus , Doenças do Sistema Nervoso , Animais , Dependovirus/genética , Radioisótopos do Iodo , Capsídeo , Distribuição Tecidual , Transdução Genética , Terapia Genética/métodos , Tomografia por Emissão de Pósitrons , Vetores Genéticos/genética , Técnicas de Transferência de Genes
3.
Hum Gene Ther ; 34(17-18): 905-916, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37624739

RESUMO

CLN2 disease is a fatal, childhood autosomal recessive disorder caused by mutations in ceroid lipofuscinosis type 2 (CLN2) gene, encoding tripeptidyl peptidase 1 (TPP-1). Loss of TPP-1 activity leads to accumulation of storage material in lysosomes and resultant neuronal cell death with neurodegeneration. Genotype/phenotype comparisons suggest that the phenotype should be ameliorated with increase of TPP-1 levels to 5-10% of normal with wide central nervous system (CNS) distribution. Our previous clinical study showed that intraparenchymal (IPC) administration of AAVrh.10hCLN2, an adeno-associated vector serotype rh.10 encoding human CLN2, slowed, but did not stop disease progression, suggesting that this may be insufficient to distribute the therapy throughout the CNS (Sondhi 2020). In this study, we assessed whether the less invasive intracisternal delivery route would be safe and provide a wider distribution of TPP-1. A study was conducted in nonhuman primates (NHPs) with intracisternal delivery to cerebrospinal fluid (CSF) of AAVrh.10hCLN2 (5 × 1013 genome copies) or phosphate buffered saline (PBS). No abnormal behavior was noted. CNS magnetic resonance imaging and clinical chemistry data were all unremarkable. Histopathology of major organs had no abnormal finding attributable to the intervention or the vector, except that in one out of two animals treated with AAVrh.10hCLN2, dorsal root ganglia showed mild-to-moderate mononuclear cell infiltrates and neuronal degeneration. In contrast to our previous NHP study (Sondhi 2012) with IPC administration where TPP-1 activity was >2 × above controls in 30% of treated brains, in the two intracisternal treated NHPs, the TPP-1 activity was >2 × above controls in 50% and 41% of treated brains, and 52% and 84% of brain had >1,000 vector genomes/µg DNA, compared to 0% in the two PBS NHP. CSF TPP1 levels in treated animals were 43-62% of normal human levels. Collectively, these data indicate that AAVrh.10hCLN2 delivered by intracisternal route is safe and widely distributes TPP-1 in brain and CSF at levels that are potentially therapeutic. Clinical Trial Registration: NCT02893826, NCT04669535, NCT04273269, NCT03580083, NCT04408625, NCT04127578, and NCT04792944.


Assuntos
Lipofuscinoses Ceroides Neuronais , Humanos , Animais , Criança , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/terapia , Distribuição Tecidual , Sistema Nervoso Central , Encéfalo/diagnóstico por imagem , Primatas
4.
Hum Gene Ther ; 34(13-14): 605-615, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37166361

RESUMO

Friedreich's ataxia (FA) is a life-threatening autosomal recessive disorder characterized by neurological and cardiac dysfunction. Arrhythmias and heart failure are the main cause of premature death. From prior studies in murine models of FA, adeno-associated virus encoding the normal human frataxin gene (AAVrh.10hFXN) effectively treated the cardiac manifestations of the disease. However, the therapeutic dose window is limited by high level of human frataxin (hFXN) gene expression associated with toxicity. As a therapeutic goal, since FA heterozygotes have no clinical manifestations of FA, we estimated the level of frataxin (FXN) necessary to convert the heart of a homozygote to that of a heterozygote. In noncardiac cells, FA heterozygotes have 30-80% of normal FXN levels (17.7-47.2 ng/mg, average 32.5 ng/mg) and FA homozygotes 2-30% normal levels (1.2-17.7 ng/mg, average 9.4 ng/mg). Therefore, an AAV vector would need to augment endogenous in an FA homozygote by >8.3 ng/mg. To determine the required dose of AAVrh.10hFXN, we administered 1.8 × 1011, 5.7 × 1011, or 1.8 × 1012 gc/kg of AAVrh.10hFXN intravenously (IV) to muscle creatine kinase (mck)-Cre conditional knockout Fxn mice, a cardiac and skeletal FXN knockout model. The minimally effective dose was 5.7 × 1011 gc/kg, resulting in cardiac hFXN levels of 6.1 ± 4.2 ng/mg and a mild (p < 0.01 compared with phosphate-buffered saline controls) improvement in mortality. A dose of 1.8 × 1012 gc/kg resulted in cardiac hFXN levels of 33.7 ± 6.4 ng/mg, a significant improvement in ejection fraction and fractional shortening (p < 0.05, both comparisons) and a 21.5% improvement in mortality (p < 0.001). To determine if the significantly effective dose of 1.8 × 1012 gc/kg could achieve human FA heterozygote levels in a large animal, this dose was administered IV to nonhuman primates. After 12 weeks, the vector-expressed FXN in the heart was 17.8 ± 4.9 ng/mg, comparable to the target human levels. These data identify both minimally and significantly effective therapeutic doses that are clinically relevant for the treatment of the cardiac manifestations of FA.


Assuntos
Ataxia de Friedreich , Insuficiência Cardíaca , Humanos , Camundongos , Animais , Ataxia de Friedreich/genética , Ataxia de Friedreich/terapia , Coração , Proteínas de Ligação ao Ferro/genética , Camundongos Knockout
5.
Hum Gene Ther ; 34(15-16): 697-704, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37171121

RESUMO

Efficient production of adeno-associated virus (AAV) vectors is a significant challenge. Human embryonic kidney HEK293T cells are widely used in good manufacturing practice facilities, producing higher yield of AAV vectors for clinical applications than HEK293 through the addition of a constitutive expression of SV40 large T antigen (SV40T), which stimulates Rep expression. However, the theoretical potential for tumorigenic consequences of a clinical AAV product containing residual DNA encoding SV40T, which may inhibit p53 growth suppressive functions is a safety concern. Although the risk is theoretical, to assure a low risk/high confidence of safety for clinical drug development, we have established a sensitive assay for assessment of functional full-length transcription competent SV40T DNA in HEK293T cell-produced AAV vectors. Using HEK293T generated 8, 9, and rh.10 serotype AAV vectors, the presence of SV40T in purified vector was assessed in vitro using quantitative polymerase chain reaction (qPCR) targeting a 129 bp amplicon combined with nested PCR targeting full-length SV40T DNA. Although low levels of the smaller amplicon were present in each AAV serotype, the full-length SV40T was undetectable. No transcription competent full-length SV40T DNA was observed by reverse transcription-quantitative polymerase chain reaction using an in vivo amplification of signal in mouse liver administered (2-10 × 1010 gc) 129 bp amplicon-positive AAV vectors. As a control for gene transfer, high levels of expressed transgene mRNAs were observed from each serotype AAV vector, yet, SV40T mRNA was undetectable. In vivo assessment of these three liver-tropic AAV serotypes, each with amplicon-positive qPCR SV40T DNA, demonstrated high transgene mRNA expression but no SV40T mRNA, that is, detection of small segments of SV40T DNA in 293T cell produced AAV inappropriately leads to the conclusion of residuals with the potential to express SV40T. This sensitive assay can be used to assess the level, if any, of SV40T antigen contaminating AAV vectors generated by HEK293T cells. ClinicalTrials.gov identifier: NCT03634007; NCT05302271; NCT01414985; NCT01161576.


Assuntos
Herpesvirus Humano 1 , Camundongos , Animais , Humanos , Células HEK293 , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Vetores Genéticos/genética , DNA
6.
Res Sq ; 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38234818

RESUMO

Friedreich's ataxia is a degenerative and progressive multisystem disorder caused by mutations in the highly conserved frataxin (FXN) gene that results in FXN protein deficiency and mitochondrial dysfunction. While gene therapy approaches are promising, consistent induction of therapeutic FXN protein expression that is sub-toxic has proven challenging, and numerous therapeutic approaches are being tested in animal models. FXN (hFXN in humans, mFXN in mice) is proteolytically modified in mitochondria to produce mature FXN. However, unlike endogenous hFXN, endogenous mFXN is further processed into N-terminally truncated, extra-mitochondrial mFXN forms of unknown function. This study assessed mature exogenous hFXN expression levels in the heart and liver of C57Bl/6 mice 7-10 months after intravenous administration of a recombinant adeno-associated virus encoding hFXN (AAVrh.10hFXN) and examined the potential for hFXN truncation in mice. AAVrh.10hFXN induced dose-dependent expression of hFXN in the heart and liver. Interestingly, hFXN was processed into truncated forms, but found at lower levels than mature hFXN. However, the truncations were at different positions than mFXN. AAVrh.10hFXN induced mature hFXN expression in mouse heart and liver at levels that approximated endogenous mFXN levels. These results demonstrate that AAVrh.10hFXN may induce expression of therapeutic levels of mature hFXN in mice.

7.
Hum Gene Ther ; 32(11-12): 563-580, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33380277

RESUMO

Metachromatic leukodystrophy, a fatal pediatric neurodegenerative lysosomal storage disease caused by mutations in the arylsulfatase A (ARSA) gene, is characterized by intracellular accumulation of sulfatides in the lysosomes of cells of the central nervous system (CNS). In previous studies, we have demonstrated efficacy of AAVrh.10hARSA, an adeno-associated virus (AAV) serotype rh.10 vector coding for the human ARSA gene to the CNS of a mouse model of the disease, and that catheter-based intraparenchymal administration of AAVrh.10hARSA to the CNS of nonhuman primates (NHPs) white matter results in widespread expression of ARSA. As a formal dose-escalating safety/toxicology study, we assessed the safety of intraparenchymal delivery of AAVrh.10hARSA vector to 12 sites in the white matter of the CNS of NHPs at 2.85 × 1010 (total low dose, 2.4 × 109 genome copies [gc]/site) and 1.5 × 1012 (total high dose, 1.3 × 1011 gc/site) gc, compared to AAVrh.10Null (1.5 × 1012 gc total, 1.3 × 1011 gc/site) as a vector control, and phosphate buffered saline for a sham surgical control. No significant adverse effects were observed in animals treated with low dose AAVrh.10hARSA. However, animals treated with the high dose AAVrh.10ARSA and the high dose Null vector had highly localized CNS abnormalities on magnetic resonance imaging scans at the sites of catheter infusions, and histopathology demonstrated that these sites were associated with infiltrates of T cells, B cells, microglial cells, and/or macrophages. Although these findings had no clinical consequences, these safety data contribute to understanding the dose limits for CNS white matter direct intraparenchymal administration of AAVrh.10 vectors for treatment of CNS disorders.


Assuntos
Leucodistrofia Metacromática , Animais , Sistema Nervoso Central , Cerebrosídeo Sulfatase/genética , Criança , Dependovirus/genética , Terapia Genética , Vetores Genéticos/genética , Humanos , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/terapia , Camundongos
8.
Sci Transl Med ; 12(572)2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268510

RESUMO

Late infantile Batten disease (CLN2 disease) is an autosomal recessive, neurodegenerative lysosomal storage disease caused by mutations in the CLN2 gene encoding tripeptidyl peptidase 1 (TPP1). We tested intraparenchymal delivery of AAVrh.10hCLN2, a nonhuman serotype rh.10 adeno-associated virus vector encoding human CLN2, in a nonrandomized trial consisting of two arms assessed over 18 months: AAVrh.10hCLN2-treated cohort of 8 children with mild to moderate disease and an untreated, Weill Cornell natural history cohort consisting of 12 children. The treated cohort was also compared to an untreated European natural history cohort of CLN2 disease. The vector was administered through six burr holes directly to 12 sites in the brain without immunosuppression. In an additional safety assessment under a separate protocol, five children with severe CLN2 disease were treated with AAVrh.10hCLN2. The therapy was associated with a variety of expected adverse events, none causing long-term disability. Induction of systemic anti-AAVrh.10 immunity was mild. After therapy, the treated cohort had a 1.3- to 2.6-fold increase in cerebral spinal fluid TPP1. There was a slower loss of gray matter volume in four of seven children by MRI and a 42.4 and 47.5% reduction in the rate of decline of motor and language function, compared to Weill Cornell natural history cohort (P < 0.04) and European natural history cohort (P < 0.0001), respectively. Intraparenchymal brain administration of AAVrh.10hCLN2 slowed the progression of disease in children with CLN2 disease. However, improvements in vector design and delivery strategies will be necessary to halt disease progression using gene therapy.


Assuntos
Dependovirus , Lipofuscinoses Ceroides Neuronais , Aminopeptidases/genética , Encéfalo , Criança , Dependovirus/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Terapia Genética , Humanos , Imageamento por Ressonância Magnética , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/terapia , Tripeptidil-Peptidase 1
9.
PLoS One ; 15(11): e0239780, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33253224

RESUMO

The cocaine vaccine dAd5GNE is comprised of a disrupted serotype 5 adenovirus gene therapy vector covalently conjugated to the cocaine analog GNE. The vaccine evokes a high titer of circulating anti-cocaine antibodies that prevent cocaine from reaching its cognate receptors in the central nervous system. Prior studies have demonstrated the efficacy of dAd5GNE in models of occasional, moderate cocaine use. However, previous studies have not sufficiently evaluated the efficacy of dAd5GNE in models of the repetitive and high-dose "binge" use patterns common in human addicts. In the present study, we evaluated the capacity of dAd5GNE vaccination to protect against "binge" cocaine use and circumstances where vaccinated addicts attempt to override the vaccine. We modeled repetitive daily cocaine use in vaccinated Balb/c mice and African green monkeys, and evaluated high-dose "binge" scenarios in Balb/c mice. In each model of daily use the dAd5GNE vaccine prevented cocaine from reaching the central nervous system. In the high-dose "binge" model, vaccination decreased cocaine-induced hyperactivity and reduced the number of cocaine-induced seizures. Based on this data and our prior data in rodents and nonhuman primates, we have initiated a clinical trial evaluating the dAd5GNE anti-cocaine vaccine as a potential therapy for cocaine addicts who wish to stop cocaine use. If dAd5GNE vaccination is safe and produces high anti-cocaine antibody titers in the clinic, we hypothesize that the vaccine will restrict the access of cocaine to the central nervous system and inhibit cocaine-induced "highs" even in the context of moderate daily and high-dose "binge" use that might otherwise cause a drug-induced overdose.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/prevenção & controle , Cocaína/análogos & derivados , Cocaína/imunologia , Adenoviridae/genética , Animais , Anticorpos/sangue , Anticorpos/imunologia , Chlorocebus aethiops , Cocaína/administração & dosagem , Cocaína/efeitos adversos , Cocaína/uso terapêutico , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Receptores de Droga/metabolismo , Vacinação , Vacinas/uso terapêutico
10.
Hum Gene Ther ; 31(23-24): 1237-1259, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33233962

RESUMO

A method is presented for quantitative analysis of the biodistribution of adeno-associated virus (AAV) gene transfer vectors following in vivo administration. We used iodine-124 (I-124) radiolabeling of the AAV capsid and positron emission tomography combined with compartmental modeling to quantify whole-body and organ-specific biodistribution of AAV capsids from 1 to 72 h following administration. Using intravenous (IV) and intracisternal (IC) routes of administration of AAVrh.10 and AAV9 vectors to nonhuman primates in the absence or presence of anticapsid immunity, we have identified novel insights into initial capsid biodistribution and organ-specific capsid half-life. Neither I-124-labeled AAVrh.10 nor AAV9 administered intravenously was detected at significant levels in the brain relative to the administered vector dose. Approximately 50% of the intravenously administered labeled capsids were dispersed throughout the body, independent of the liver, heart, and spleen. When administered by the IC route, the labeled capsid had a half-life of ∼10 h in the cerebral spinal fluid (CSF), suggesting that by this route, the CSF serves as a source with slow diffusion into the brain. For both IV and IC administration, there was significant influence of pre-existing anticapsid immunity on I-124-capsid biodistribution. The methodology facilitates quantitative in vivo viral vector dosimetry, which can serve as a technique for evaluation of both on- and off-target organ biodistribution, and potentially accelerate gene therapy development through rapid prototyping of novel vector designs.


Assuntos
Encéfalo/diagnóstico por imagem , Dependovirus/genética , Radioisótopos do Iodo/farmacologia , Imagem Corporal Total/métodos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/virologia , Dependovirus/química , Vetores Genéticos/genética , Humanos , Radioisótopos do Iodo/química , Primatas , Distribuição Tecidual/efeitos dos fármacos
11.
Hum Gene Ther ; 31(1-2): 57-69, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31608704

RESUMO

Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disorder caused by repetitive trauma to the central nervous system (CNS) suffered by soldiers, contact sport athletes, and civilians following accident-related trauma. CTE is a CNS tauopathy, with trauma-induced inflammation leading to accumulation of hyperphosphorylated forms of the microtubule-binding protein Tau (pTau), resulting in neurofibrillary tangles and progressive loss of neurons. At present, there are no therapies to treat CTE. We hypothesized that direct CNS administration of an adeno-associated virus (AAV) vector coding for an anti-pTau antibody would generate sufficient levels of anti-pTau in the CNS to suppress pTau accumulation thus interrupting the pathogenic process. Using a serotype AAVrh.10 gene transfer vector coding for a monoclonal antibody directed against pTau, we demonstrate the feasibility of this strategy in a murine CTE model in which pTau accumulation was elicited by repeated traumatic brain injury (TBI) using a closed cortical impact procedure over 5 days. Direct delivery of AAVrh.10 expression vectors coding for either of the two different anti-pTau antibodies to the hippocampus of these TBI mice significantly reduced pTau levels across the CNS. Using doses that can be safely scaled to humans, the data demonstrate that CNS administration of AAVrh.10anti-pTau is effective, providing a new strategy to interrupt the CTE consequences of TBI.


Assuntos
Encefalopatia Traumática Crônica/genética , Encefalopatia Traumática Crônica/terapia , Terapia Genética , Proteínas tau/genética , Animais , Anticorpos Monoclonais/farmacologia , Encéfalo/metabolismo , Encéfalo/patologia , Dependovirus/genética , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Vetores Genéticos/genética , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Ligação Proteica , Proteínas tau/antagonistas & inibidores , Proteínas tau/metabolismo
12.
Expert Opin Orphan Drugs ; 7(11): 473-500, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33365208

RESUMO

Neuronal ceroid lipofuscinoses (NCL) represent a class of neurodegenerative disorders involving defective lysosomal processing enzymes or receptors, leading to lysosomal storage disorders, typically characterized by observation of cognitive and visual impairments, epileptic seizures, ataxia, and deterioration of motor skills. Recent success of a biologic (Brineura®) for the treatment of neurologic manifestations of the central nervous system (CNS) has led to renewed interest in therapeutics for NCL, with the goal of ablating or reversing the impact of these devastating disorders. Despite complex challenges associated with CNS therapy, many treatment modalities have been evaluated, including enzyme replacement therapy, gene therapy, stem cell therapy, and small molecule pharmacotherapy. Because the clinical endpoints for the evaluation of candidate therapies are complex and often reliant on subjective clinical scales, the development of quantitative biomarkers for NCLs has become an apparent necessity for the validation of potential treatments. We will discuss the latest findings in the search for relevant biomarkers for assessing disease progression. For this review, we will focus primarily on recent pre-clinical and clinical developments for treatments to halt or cure these NCL diseases. Continued development of current therapies and discovery of newer modalities will be essential for successful therapeutics for NCL. AREAS COVERED: The reader will be introduced to the NCL subtypes, natural histories, experimental animal models, and biomarkers for NCL progression; challenges and different therapeutic approaches, and the latest pre-clinical and clinical research for therapeutic development for the various NCLs. This review corresponds to the literatures covering the years from 1968 to mid-2019, but primarily addresses pre-clinical and clinical developments for the treatment of NCL disease in the last decade and as a follow-up to our 2013 review of the same topic in this journal. EXPERT OPINION: Much progress has been made in the treatment of neurologic diseases, such as the NCLs, including better animal models and improved therapeutics with better survival outcomes. Encouraging results are being reported at symposiums and in the literature, with multiple therapeutics reaching the clinical trial stage for the NCLs. The potential for a cure could be at hand after many years of trial and error in the preclinical studies. The clinical development of enzyme replacement therapy (Brineura® for CLN2), immunosuppression (CellCept® for CLN3), and gene therapy vectors (for CLN1, CLN2, CLN3, and CLN6) are providing encouragement to families that have a child afflicted with NCL. We believe that successful therapies in the future may involve the combination of two or more therapeutic modalities to provide therapeutic benefit especially as the patients grow older.

13.
Hum Gene Ther Methods ; 29(3): 146-155, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29706115

RESUMO

The development of a drug product requires rigorous methods of characterization and quality control to assure drug potency. Gene therapy products, a relatively new strategy for drug design with very few licensed examples, represent a unique challenge for the measure of potency. Unlike traditional drugs, potency for a gene therapeutic is a tally of the measures of multiple steps, including infectivity, transcription, translation, protein modifications, proper localization of the protein product, and protein function. This is particularly challenging for products based on the adeno-associated virus (AAV) platform, which has poor in vitro infectivity, limiting the sensitivity and thus the usefulness of cell-based assays. A rigorous in vivo assay has been established that separately evaluates infection, transcription, and resulting protein levels with specifications for each based on real time polymerase chain reaction (DNA and RNA) and standard protein assays. For an acceptance criterion, an administered vector must have vector DNA, transgene mRNA, and transgene expressed protein each concurrently meet individual specifications or the production lot fails. Using the AAVrh.10 serotype as a model vector and three different transgenes as examples, the assay is based on intravenous administration of the vector to male mice. At 2 weeks, the harvested liver is homogenized and assessed for vector genome levels (to assess for vector delivery), mRNA (to assess vector infectivity and transcription), and protein in the liver or serum (to assess protein expression). For all AAV vectors, the assay is robust and reproducible: vector DNA (linearity 102-109 copies, coefficient of variation) intra-assay <0.8%, inter-assay <0.5%; mRNA intra-assay <3.3%, inter-assay <3.4%. The reproducibility of the assay for transgene expressed protein is product specific. This in vivo potency assay is a strategy for characterization and a quantitative lot release test, providing a path forward to meet regulatory drug requirements for any AAV gene therapy vectors.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Animais , Dependovirus/metabolismo , Terapia Genética/efeitos adversos , Terapia Genética/normas , Vetores Genéticos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
Exp Neurol ; 306: 22-33, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29655638

RESUMO

Niemann-Pick type C2 (NPC2) disease is a rare, neurodegenerative disorder caused by mutations in the NPC2 gene, leading to lysosomal accumulation of unesterified cholesterol and other lipids. It is characterized by hepatosplenomegaly, liver dysfunction and severe neurological manifestations, resulting in early death. There is no effective therapy for NPC2 disease. Here, we evaluated the effectiveness of an adeno-associated virus (AAV), serotype rh.10 gene transfer vector expressing the mouse Npc2 gene (AAVrh.10-mNpc2-HA, HA tagged to facilitate analysis) to treat the disease in an Npc2-/- mouse model. A single intracisternal administration of the AAVrh.10-mNpc2-HA to 6 week old Npc2-/- mice mediated vector DNA, transgene mRNA and protein expression in brain and other organs. Compared to untreated Npc2-/- mice, AAV-treated Npc2-/- mice demonstrated amelioration of disease pathology in the brain, reduced lysosomal storage, reduced Purkinje cell death, decreased gliosis, and improved performance in behavioral tasks. Treatment-related reduction in serum disease markers was detected early and this effect persisted. Liver and spleen pathology were improved with significant reduction of liver cholesterol and sphingomyelin levels in treated Npc2-/- mice. Finally, administration of AAVrh.10-mNpc2-HA significantly extended life-span. Taken together, these data demonstrate the benefit of a one-time intracisternal administration of AAVrh.10-mNpc2-HA as a life-long treatment for NPC2 disease.


Assuntos
Terapia Genética/métodos , Doença de Niemann-Pick Tipo C/terapia , Proteínas de Transporte Vesicular/genética , Animais , Cisterna Magna , Dependovirus/genética , Expressão Gênica , Vetores Genéticos , Expectativa de Vida , Fígado/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Microinjeções , Atividade Motora , Doença de Niemann-Pick Tipo C/patologia , Doença de Niemann-Pick Tipo C/psicologia , Fenótipo , Desempenho Psicomotor , Baço/patologia
15.
Hum Gene Ther Clin Dev ; 29(1): 24-47, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29409358

RESUMO

Alzheimer's disease (AD) is a progressive degenerative neurological disorder affecting nearly one in nine elderly people in the United States. Population studies have shown that an inheritance of the apolipoprotein E (APOE) variant APOE4 allele increases the risk of developing AD, whereas APOE2 homozygotes are protected from late-onset AD. It was hypothesized that expression of the "protective" APOE2 variant by genetic modification of the central nervous system (CNS) of APOE4 homozygotes could reverse or prevent progressive neurologic damage. To assess the CNS distribution and safety of APOE2 gene therapy for AD in a large-animal model, intraparenchymal, intracisternal, and intraventricular routes of delivery to the CNS of nonhuman primates of AAVrh.10hAPOE2-HA, an AAVrh.10 serotype coding for an HA-tagged human APOE2 cDNA sequence, were evaluated. To evaluate the route of delivery that achieves the widest extent of APOE2 expression in the CNS, the expression of APOE2 in the CNS was evaluated 2 months following vector administration for APOE2 DNA, mRNA, and protein. Finally, using conventional toxicology assays, the safety of the best route of delivery was assessed. The data demonstrated that while all three routes are capable of mediating ApoE2 expression in AD relevant regions, intracisternal delivery of AAVrh.10hAPOE2-HA safely mediated wide distribution of ApoE2 with the least invasive surgical intervention, thus providing the optimal strategy to deliver vector-mediated human APOE2 to the CNS.


Assuntos
Doença de Alzheimer/terapia , Apolipoproteína E2/genética , Sistema Nervoso Central/metabolismo , Terapia Genética/métodos , Doença de Alzheimer/genética , Animais , Apolipoproteína E2/metabolismo , Apolipoproteína E4/genética , Chlorocebus aethiops , Dependovirus/genética , Terapia Genética/efeitos adversos , Vetores Genéticos/genética , Células HEK293 , Humanos , Masculino
16.
Hum Gene Ther ; 29(4): 403-412, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29316814

RESUMO

Congenital adrenal hyperplasia (CAH) is an autosomal recessive disorder occurring in 1:10,000 to 1:20,000 live births. In >95% of the cases, CAH results from mutations in the CYP21A2 gene, encoding the adrenal steroid enzyme 21-hydroxylase (21OH). Cardinal phenotypic features of CAH include genital ambiguity and sexual precocity, and in severe cases, neonatal salt loss and death. Current standard of care consists of lifelong oral steroid replacement to reverse the cortisol deficiency. Although significant advances in the treatment of CAH have been made, the burden of a lifelong therapeutic intervention is not ideal for quality of life. Gene therapy for CAH by adeno-associated virus (AAV) vectors has been shown to efficiently transduce the adrenal cortex, restoring normal steroidogenesis in the short term. However, adrenocortical cells are continuously renewed by stem cells located at the adrenal capsule, which differentiate as they centripetally migrate towards the adrenal medulla where they undergo apoptosis. In this context, we hypothesized that AAV-mediated genetic correction of the adrenal cortex will work short term but will eventually lead to a loss of correction. To test this hypothesis, we administered intravenously an AAV serotype rh.10 gene transfer vector (AAVrh.10-21OH-HA) to 21-hydroxylase deficient mice (21OH-/-). The data demonstrates that a single intravenous administration efficiently transduces adrenocortical cells leading to 21OH-HA expression and restoration of normal steroidogenesis. However, the duration of therapeutic efficacy lasted for only 8 weeks, accompanied by loss of 21OH-HA expression in the adrenal gland. Analysis in immunodeficient mice confirmed that the disappearance of transgene expression was not due to an antiviral/transgene immune response. Taken together, these results demonstrate that a single treatment with an adeno-associated viral vector expressing a functional copy of the mutated gene can only transiently treat adrenocortical hereditary disorders and that strategies to genetically modify the adrenocortical stem cells population will likely be required.


Assuntos
Hiperplasia Suprarrenal Congênita/genética , Terapia Genética , Esteroide 21-Hidroxilase/genética , Glândulas Suprarrenais/metabolismo , Glândulas Suprarrenais/patologia , Hiperplasia Suprarrenal Congênita/patologia , Hiperplasia Suprarrenal Congênita/terapia , Medula Suprarrenal/metabolismo , Animais , Apoptose/genética , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Mutação
17.
Chronic Obstr Pulm Dis ; 5(4): 244-257, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30723782

RESUMO

Alpha-1 antitrypsin deficiency (AATD) manifests primarily as early-onset emphysema caused by the destruction of the lung by neutrophil elastase due to low amounts of the serine protease inhibitor alpha-1 antitrypsin (AAT). The current therapy involves weekly intravenous infusions of AAT-derived from pooled human plasma that is efficacious, yet costly. Gene therapy applications designed to provide constant levels of the AAT protein are currently under development. The challenge is for gene therapy to provide sufficient amounts of AAT to normalize the inhibitor level and anti-neutrophil elastase capacity in the lung. One strategy involves administration of an adeno-associated virus (AAV) gene therapy vector to the pleural space providing both local and systemic production of AAT to reach consistent therapeutic levels. This review focuses on the strategy, advantages, challenges, and updates for intrapleural administration of gene therapy vectors for the treatment of AATD.

18.
Pharmacol Biochem Behav ; 150-151: 76-86, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27697554

RESUMO

Immunopharmacotherapy offers an approach for treating cocaine abuse by specifically targeting the cocaine molecule and preventing its access to the CNS. dAd5GNE is a novel cocaine vaccine that attenuates the stimulant and the reinforcing effects of cocaine in rats. The goal of this study was to extend and validate dAd5GNE vaccine efficacy in non-human primates. Six experimentally naïve adult female rhesus monkeys (Macaca mulatta) were trained to self-administer 0.1mg/kg/injection intravenous (i.v.) cocaine or receive candy; then 4 monkeys were administered the vaccine and 2 monkeys were administered vehicle intramuscularly, with additional vaccine boosts throughout the study. The reinforcing effects of cocaine were measured during self-administration, extinction, and reacquisition (relapse) phases. Serum antibody titers in the vaccinated monkeys remained high throughout the study. There was no change in the preference for cocaine over candy over a 20-week period in 5 of the 6 monkeys; only one of the 4 (25%) vaccinated monkeys showed a decrease in cocaine choice. All 6 monkeys extinguished responding for cocaine during saline extinction testing; vaccinated monkeys tended to take longer to extinguish responding than control monkeys (17.5 vs. 7.0 sessions). Vaccination substantially retarded reacquisition of cocaine self-administration; control monkeys resumed cocaine self-administration within 6-41 sessions and 1 vaccinated monkey resumed cocaine self-administration in 19 sessions. The other 3 vaccinated monkeys required between 57 and 94 sessions to resume cocaine self-administration even in the context of employing several manipulations to encourage cocaine reacquisition. These data suggest that the dAdGNE vaccine may have therapeutic potential for humans who achieve cocaine abstinence as part of a relapse prevention strategy.


Assuntos
Adenoviridae/genética , Comportamento de Escolha/efeitos dos fármacos , Cocaína/administração & dosagem , Cocaína/imunologia , Autoadministração , Vacinas/uso terapêutico , Animais , Anticorpos/sangue , Feminino , Macaca mulatta , Ciclo Menstrual/efeitos dos fármacos , Vacinação
19.
J Neurosci Res ; 94(11): 1169-79, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27638601

RESUMO

Leukodystrophies (LDs) are rare, often devastating genetic disorders with neurologic symptoms. There are currently no disease-specific therapeutic approaches for these diseases. In this review we use metachromatic leukodystrophy as an example to outline in the brief the therapeutic approaches to MLD that have been tested in animal models and in clinical trials, such as enzyme-replacement therapy, bone marrow/umbilical cord blood transplants, ex vivo transplantation of genetically modified hematopoietic stem cells, and gene therapy. These studies suggest that to be successful the ideal therapy for MLD must provide persistent and high level expression of the deficient gene, arylsulfatase A in the CNS. Gene therapy using adeno-associated viruses is therefore the ideal choice for clinical development as it provides the best balance of potential for efficacy with reduced safety risk. Here we have summarized the published preclinical data from our group and from others that support the use of a gene therapy with AAVrh.10 serotype for clinical development as a treatment for MLD, and as an example of the potential of gene therapy for LDs especially for Krabbe disease, which is the focus of this special issue. © 2016 Wiley Periodicals, Inc.


Assuntos
Terapia Genética/métodos , Leucodistrofia Metacromática/terapia , Animais , Cerebrosídeo Sulfatase/deficiência , Cerebrosídeo Sulfatase/genética , Modelos Animais de Doenças , Humanos , Leucodistrofia Metacromática/genética
20.
Hum Gene Ther Clin Dev ; 25(3): 164-77, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25144894

RESUMO

Metachromatic leukodystrophy (MLD), a fatal disorder caused by deficiency of the lysosomal enzyme arylsulfatase A (ARSA), is associated with an accumulation of sulfatides, causing widespread demyelination in both central and peripheral nervous systems. On the basis of prior studies demonstrating that adeno-associated virus AAVrh.10 can mediate widespread distribution in the CNS of a secreted lysosomal transgene, and as a prelude to human trials, we comparatively assessed the optimal CNS delivery route of an AAVrh.10 vector encoding human ARSA in a large animal model for broadest distribution of ARSA enzyme. Five routes were tested (each total dose, 1.5 × 10(12) genome copies of AAVrh.10hARSA-FLAG): (1) delivery to white matter centrum ovale; (2) deep gray matter delivery (putamen, thalamus, and caudate) plus overlying white matter; (3) convection-enhanced delivery to same deep gray matter locations; (4) lateral cerebral ventricle; and (5) intraarterial delivery with hyperosmotic mannitol to the middle cerebral artery. After 13 weeks, the distribution of ARSA activity subsequent to each of the three direct intraparenchymal administration routes was significantly higher than in phosphate-buffered saline-administered controls, but administration by the intraventricular and intraarterial routes failed to demonstrate measurable levels above controls. Immunohistochemical staining in the cortex, white matter, deep gray matter of the striatum, thalamus, choroid plexus, and spinal cord dorsal root ganglions confirmed these results. Of the five routes studied, administration to the white matter generated the broadest distribution of ARSA, with 80% of the brain displaying more than a therapeutic (10%) increase in ARSA activity above PBS controls. No significant toxicity was observed with any delivery route as measured by safety parameters, although some inflammatory changes were seen by histopathology. We conclude that AAVrh.10-mediated delivery of ARSA via CNS administration into the white matter is likely to be safe and yields the widest distribution of ARSA, making it the most suitable route of vector delivery.


Assuntos
Cerebrosídeo Sulfatase/genética , DNA Complementar/genética , Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/genética , Animais , Sistema Nervoso Central/patologia , Cerebrosídeo Sulfatase/deficiência , Cerebrosídeo Sulfatase/metabolismo , Regulação da Expressão Gênica , Humanos , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/terapia , Primatas , Sorogrupo , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA